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 In this paper, we propose and investigate the optimal tuning PID 
controller of unstable fractional order system by desired transient 
characteristics using the real interpolation method (RIM). The 
research shows that the main advantages of this method are drawn  
as the followings: 1) Carrying out an investigation of the stable  
region of coefficients of a PID controller using D-decomposition 
method; 2) Applying the method to investigate an unstable fractional 
order system. 
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1. INTRODUCTION 

Due to the individual merits such as no contact, no wear, no lubrication and adjustable dynamics, 
magnetic bearings (MBs) are being widely applied to a variety of industrial products, especially the high-
speed rotating machinery and precise positioning systems [1-3]. Considering the inherent nonlinearity and 
open-loop instability of MBs, the accurate modeling and control are two essential aspects of achieving high-
performance requirements. Nowadays, PID controllers have received considerable attention in the last years 
both from an academic and industrial point of view [1-5]. In fact, in principle, they provide more flexibility 
in the controller design, concerning the standard PID controllers, because they have five parameters to select. 
However, this also implies that the tuning of the controller can be much more complicated. They have been 
successfully applied in practical applications such as motion control of manipulators and chaos control of 
electrical circuits. In these applications, it has been verified that PID controllers can improve the performance 
of traditional control system adopting integer order PID controllers. The most important advantage of the PID 
controllers is that they can afford broader possibilities offered by their new fractional order dynamics [4-7]. 
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However, this also indicates that the tuning strategies of PID controllers are much more complicated. In the 
researches on the PID controllers, tuning of controller parameters has become a significant issue. 

In general, the tuning methods for PID controllers are classified into analytical, numerical, and rule-
based ones. In [6-7] the controller parameters have been analytically derived by solving nonlinear equations 
fulfilling the gain/phase crossover frequency and phase/gain margin specifications. The robustness to loop 
gain variations specification proposed in [8] has also been widely used to design PID and proportional–
integral (PI) controllers. The merits of the analytical method are apparent; however, it is available only when 
the equations are few in number and simple. Therefore, it is challenging to obtain a complete PID controller 
for the MB system by solving five complicated nonlinear equations. As for the rule-based method, it can 
easily calculate the controller parameters based on empirical tuning rules, which can be observed in [9-21]. In 
this paper, we propose and investigate the optimal tuning PID controller of unstable fractional order system 
by desired transient characteristics using the real interpolation method (RIM). The main advantages of this 
method are drawn as the followings: 

1) Carrying out an investigation of the stable region of coefficients of a PID controller using D-
decomposition method. 

2) Applying the method to investigate an unstable fractional order system. 
The rest of this paper is organized as follows. In Section 2 the problem is formulated. Numerical 

results and discussions are described in Section 3. Conclusions are drawn in Section 4. 
 
 
2. PROBLEM FORMULATION 

In this section, Figure 1 illustrates the control system with the negative unity feedback. The 
mathematical description of this model is presented. 
 
 

 
 

Figure 1. Control system with negative unity feedback 
 
 

The transfer function of the PID controller can be formulated as 
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The transfer function of the plant (in the fractional form) is calculated as 
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where 𝑚,𝑛 ∈ 𝑁, 𝑎𝑛𝑑 𝑎଴, … ,𝑎௠, 𝑏଴, … , 𝑏௡,𝛼௠ ൐ 𝛼௠ିଵ ൐ ⋯ ൐ 𝛼ଵ ൐  𝛼଴ ൌ 0,𝛽௡ ൐ 𝛽௡ିଵ ൐ ⋯ ൐ 𝛽ଵ ൐  𝛽଴ ൌ
0 are arbitrary real numbers 𝑎௠ ് 0, 𝑏௡ ് 0. 

The transfer function of PID controller (1) can be rewritten in the rational form as the following 
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The characteristic equation in this analysis can be expressed as 

 
W( ) 1 (s)G(s)s C   (4) 

 
Characteristic polynomial is formulated as 
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 2P( ) ( ) K K K B ( )G d p i Gs sA s s s s     (5) 

A gain-phase margin tester (GPMT) can be thought of as a “virtual compensator”, provides 
information for plotting the boundaries of constant gain margin and phase margin in a parameter plane [14]. 
The frequency independent GPMT is given as in [15]: 
 

(M, ) Me .j
tG    (6) 

 
For a given IOPID controller parameters K , K , Kp i d  the closed-loop system is said to be bounded-

input bounded-output (BIBO) stable if the quasi-polynomial P(s, K , K , K )p i d  has no roots in the closed right-

half of the s-plane (RHP). The stability domain S in the parameter space P with K , K , Kp i d  being 

coordinates is the region that for K , K , Kp i d S  the roots of quasi-polynomial P(s, K , K , K )p i d all lie in 

open left-half of the s-plane (LHP). The boundaries of the stability domain S which are described by real root 
boundary (RRB), infinite root boundary (IRB) and complex root boundary (CRB) can be determined by the 
D-decomposition method [15], [16] . These boundaries are defined by the equations P(0,K) 0 , P( ,K) 0   

and P( j ,K) 0   for (0, )  , respectively, where P(s,K)  is the characteristic function of the closed-

loop system and K the vector of controller parameters. 
 
2.1. Determining RRB 

In applying the descriptions of stability boundaries of the stability domain S to the FOCE in (1), the 
RRB turns out to be simply a straight line given by 
 

P(0, K , K , K ) 0 0,p i d iK    (7) 

 

for 0 1s   in the transfer function of the plant in (2). 
 
2.2. Determining IRB  

The calculating of the IRB faces with more technical difficulties due to the fractional component. 
FOCE possesses an infinite number of roots, which cannot be calculated analytically in the general case. 
However, the asymptotic location of roots far from the origin is well known [17], which may lead to IRB. 
The objective of this section is to determine the stabilizing region in ሺ𝐾௣,𝐾௜ሻ plane with given 𝐾ௗ, and values 
for which the following complex polynomial is Hurwitz: 
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where L(s) and M(s) are given complex fractional order polynomials. When 𝐿ሺ𝑠ሻ  ൌ  𝑀ሺ𝑠ሻ  ൌ  1, the 
stabilization of Eq. (8) reduces to the standard IOPID stabilization. 

From (8), we have D( ) 0  . Suppose when s  ,        / t
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and c are real and complex numbers respectively. We have [16]: 
(a) If 1t  , then the boundary does not exist. 
(b) If 1t   and c is not real, then the boundary does not exist. 
(c) If 1t   and c is real, then 
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The RRB and IRB lines can be obtained from (7) and (10), respectively. 

 
2.3. Determining CRB 
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To construct the CRB, we substitute s j  into (5) to obtain  

 
P(j ) (j ) (j ) (j )B (j ) 0C G C GA A B         (11) 

Using D-decomposition to find stability [15]. In the s plane 
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where  is a real number. The formula (6) can be expressed into a formula with the separate real and 

imaginary components  
2P(j ) (K K ) R ( ) I ( ) K R ( ) R ( ) 0i d BG AG p BG AGj                   , (12) 

where R BG  , R AG , IAG  are the real component of B (j )G  , the real and imaginary components of  

(j )GA  , respectively. 

Finally, by setting the real and imaginary parts equalized zero the formula (12) leads to the  
detail form: 
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The solution in the (Kp, Ki) plane 
This is a three-dimensional system in terms of the controller parameters K , K , Kp i d . In order to deal 

with two unknowns K , Kp i , the value of Kd  will be fixed to find the stability region in the (K , K )p i plane. 

Equation (11) rewrite in terms of two unknowns K , Kp i . 

 

2

K R ( ) / R ( )

K ( ) / R ( ) K

p AG BG

i AG BG dI

 

   

 


 
 (14) 

 
The above two equations trace out a curve in the (K , K )p i -plane representing the CRB, for fixed

Kd , as  run from 0 to . 

The solution in the (Kp, Kd) plane 
Next, to find the stability region in the (Kp, Kd) plane, the value of Ki will be fixed. Then formula 

(13) can be rewritten as:  
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The above two equations trace out a curve in the (K , K )p d -plane representing the CRB, for fixed

Ki , as  run from 0 to . 

The solution in the (Ki, Kd) plane 
Next, to find the stability region in the (Ki, Kd) plane, the value of Kd will be fixed. Then formula 

(13) can be rewritten as:  
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The above two equations trace out a curve in the (K , K )i d -plane representing the CRB, for fixed

K p , as  run from 0 to . 

 
 
3. NUMERICAL SAMPLE AND DISCUSSION 

Given fractional order transfer function of an unstable bearing system [18] [19], 
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  
 (17) 

Investigation of the stability region of the unstable fractional order transfer function of the bearing system 
(17) is carried out in the following parts. 
 
3.1. Determining RRB 

It is important to determine the stability region of the PID controller, tuned for the system (17). The 
RRB can be determined by (7) as the bellow  
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3.2. Determining IRB 

The IRB can be determined according to (9) 
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Not exist the IRB. 

 
 

 
 
 

Figure 2. The CRB graph in the ሺK୮, K୧ሻ plane and Kୢ ൌ 10. 
 
3.3. Determining CRB 

The CRB can be determined by three conditions (13), (14) and (15). Figure 2 shows the stability 
region of the transfer function (17). The CRB in the (K_p,K_i) plane when K_d=10 is shown in the Figure 2. 
The cross-line area is a feasible region for the coefficients of the PID controller. The cross-line region 
demonstrates stability region of K_p,K_i where K_d=10. Obviously, the stability region of PID controller’s 
coefficients lie in the first quarter of the coordinate [22-25].  

Furthermore, Figure 3 shows a more feasible area with five values of 𝐾ௗ.  
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Figure 3. The CRB graphs in the ሺK୮, K୧ሻ plane with 5 values of coefficients Kୢ. 
Figure 3 shows that by increasing the value of the coefficient 𝐾ௗ , the feasible region is expanded. 
 
 

 
 

Figure 4. The CRB of the PID coefficients 
 
 

In Figure 4. The distribution of 𝐾௣,𝐾௜ ,𝐾ௗ in the 3-D system is represented. In more details, we can 
investigate the stability region of the PID controller’s coefficient separately in the 2-D coordinate plane. In 
the Figure 4.  

 
 

 
 

Figure 5. The CRB in the ൫K୮, K୧൯ plane 
 
 

Figure 5 illustrates the stability region of 𝐾௣ and 𝐾௜. Obviously, the stability region is covered the first 
and fourth quarters of the coordinate system. From the Figure 5, there is a significance that the coefficient 
𝐾௣ ൐ൌ 2465. Furthermore, The Figure 6 show the stability region in the 𝐾௣,𝐾ௗ plane. The values of the 
coefficient 𝐾௣,𝐾ௗ are located in the first and fourth quarters, and of course 𝐾௣ ൒  2456. 
 
 

 
 

Figure 6. The CRB in the ൫K୮, Kୢ൯ plane 
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The CRB in the ሺK୧, Kୢሻ plane shows that the distribution of 𝐾௜ and 𝐾ௗ  
 
 

 
 

Figure 7. The CRB in the ሺK୧, Kୢሻ plane 
 
 

The results simply lead to the conclusion 
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Three parameters , ,p i dK K K  of the PID controller are determined in four figure 4-7 [22-25]. 

 
 
4. CONCLUSION 

In this paper, we propose and investigate optimal tuning PID controller of unstable fractional order 
system by desired transient characteristics using the real interpolation method (RIM). The research shows 
that the main advantages of this method are drawn as the followings: 1) Carrying out an investigation of the 
stable region of coefficients of a PID controller using D-decomposition method; 2) Applying the method to 
investigate an unstable fractional order system. 
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